Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasitol Int ; 87: 102513, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34785370

RESUMO

Plasmodium falciparum macrophage migration inhibitory factor (PfMIF) is a homologue of the multifunctional human host cytokine MIF (HsMIF). Upon schizont rupture it is released into the human blood stream where it acts as a virulence factor, modulating the host immune system. Whereas for HsMIF a tautomerase, an oxidoreductase, and a nuclease activity have been identified, the latter has not yet been studied for PfMIF. Furthermore, previous studies identified PfMIF as a target for several redox post-translational modifications. Therefore, we analysed the impact of S-glutathionylation and S-nitrosation on the protein's functions. To determine the impact of the four cysteines of PfMIF we produced His-tagged cysteine to alanine mutants of PfMIF via site-directed mutagenesis. Recombinant proteins were analysed via mass spectrometry, and enzymatic assays. Here we show for the first time that PfMIF acts as a DNase of human genomic DNA and that this activity is greater than that shown by HsMIF. Moreover, we observed a significant decrease in the maximum velocity of the DCME tautomerase activity of PfMIF upon alanine replacement of Cys3, and Cys3/Cys4 double mutant. Lastly, using a yeast reporter system, we were able to verify binding of PfMIF to the human chemokine receptors CXCR4, and demonstrate a so-far overlooked binding to CXCR2, both of which function as non-cognate receptors for HsMIF. While S-glutathionylation and S-nitrosation of PfMIF did not impair the tautomerase activity of PfMIF, activation of these receptors was significantly decreased.


Assuntos
Cisteína/deficiência , Fatores Inibidores da Migração de Macrófagos/química , Fatores Inibidores da Migração de Macrófagos/genética , Plasmodium falciparum/química , Alanina/química , Cisteína/genética , Desoxirribonucleases/metabolismo , Humanos , Plasmodium falciparum/genética , Proteínas Recombinantes/genética
2.
Mol Biochem Parasitol ; 242: 111362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513391

RESUMO

Plasmodium falciparum causes the deadliest form of malaria. Adequate redox control is crucial for this protozoan parasite to overcome oxidative and nitrosative challenges, thus enabling its survival. Sulfenylation is an oxidative post-translational modification, which acts as a molecular on/off switch, regulating protein activity. To obtain a better understanding of which proteins are redox regulated in malaria parasites, we established an optimized affinity capture protocol coupled with mass spectrometry analysis for identification of in vivo sulfenylated proteins. The non-dimedone based probe BCN-Bio1 shows reaction rates over 100-times that of commonly used dimedone-based probes, allowing for a rapid trapping of sulfenylated proteins. Mass spectrometry analysis of BCN-Bio1 labeled proteins revealed the first insight into the Plasmodium falciparum trophozoite sulfenylome, identifying 102 proteins containing 152 sulfenylation sites. Comparison with Plasmodium proteins modified by S-glutathionylation and S-nitrosation showed a high overlap, suggesting a common core of proteins undergoing redox regulation by multiple mechanisms. Furthermore, parasite proteins which were identified as targets for sulfenylation were also identified as being sulfenylated in other organisms, especially proteins of the glycolytic cycle. This study suggests that a number of Plasmodium proteins are subject to redox regulation and it provides a basis for further investigations into the exact structural and biochemical basis of regulation, and a deeper understanding of cross-talk between post-translational modifications.


Assuntos
Compostos Bicíclicos com Pontes/química , Sondas Moleculares/química , Plasmodium falciparum/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Ácidos Sulfênicos/metabolismo , Trofozoítos/metabolismo , Células Cultivadas , Cisteína/metabolismo , Eritrócitos/parasitologia , Ontologia Genética , Glutationa/metabolismo , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Compostos Nitrosos/metabolismo , Oxirredução , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Coloração e Rotulagem/métodos , Trofozoítos/genética
3.
Sci Rep ; 9(1): 13542, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537845

RESUMO

Peroxiredoxins (Prxs) are crucially involved in maintaining intracellular H2O2 homeostasis via their peroxidase activity. However, more recently, this class of proteins was found to also transmit oxidizing equivalents to selected downstream proteins, which suggests an important function of Prxs in the regulation of cellular protein redox relays. Using a pull-down assay based on mixed disulfide fishing, we characterized the thiol-dependent interactome of cytosolic Prx1a and mitochondrial Prx1m from the apicomplexan malaria parasite Plasmodium falciparum (Pf). Here, 127 cytosolic and 20 mitochondrial proteins that are components of essential cellular processes were found to interact with PfPrx1a and PfPrx1m, respectively. Notably, our data obtained with active-site mutants suggests that reducing equivalents might also be transferred from Prxs to target proteins. Initial functional analyses indicated that the interaction with Prx can strongly impact the activity of target proteins. The results provide initial insights into the interactome of Prxs at the level of a eukaryotic whole cell proteome. Furthermore, they contribute to our understanding of redox regulatory principles and thiol-dependent redox relays of Prxs in subcellular compartments.


Assuntos
Peroxirredoxinas/metabolismo , Plasmodium falciparum/metabolismo , Antioxidantes/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Dissulfetos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Peroxirredoxinas/fisiologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Compostos de Sulfidrila
4.
J Pharm Biomed Anal ; 174: 277-285, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185339

RESUMO

Knipholone (1) and knipholone anthrone (2), isolated from the Ethiopian medicinal plant Kniphofia foliosa Hochst. are two phenyl anthraquinone derivatives, a compound class known for biological activity. In the present study, we describe the activity of both 1 and 2 in several biological assays including cytotoxicity against four human cell lines (Jurkat, HEK293, SH-SY5Y and HT-29), antiplasmodial activity against Plasmodium falciparum 3D7 strain, anthelmintic activity against the model organism Caenorhabditis elegans, antibacterial activity against Aliivibrio fischeri and Mycobacterium tuberculosis and anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs) infected with HIV-1c. In parallel, we investigated the stability of knipholone (2) in solution and in culture media. Compound 1 displays strong cytotoxicity against Jurkat, HEK293 and SH-SY5Y cells with growth inhibition ranging from approximately 62-95% when added to cells at 50 µM, whereas KA (2) exhibits weak to strong activity with 26, 48 and 70% inhibition of cell growth, respectively. Both 1 and 2 possess significant antiplasmodial activity against Plasmodium falciparum 3D7 strain with IC50 values of 1.9 and 0.7 µM, respectively. These results complement previously reported data on the cytotoxicity and antiplasmodial activity of 1 and 2. Furthermore, compound 2 showed HIV-1c replication inhibition (growth inhibition higher than 60% at tested concentrations 0.5, 5, 15 and 50 µg/ml and an EC50 value of 4.3 µM) associated with cytotoxicity against uninfected PBMCs. The stability study based on preincubation, HPLC and APCI-MS (atmospheric-pressure chemical ionization mass spectrometry) analysis indicates that compound 2 is unstable in culture media and readily oxidizes to form compound 1. Therefore, the biological activity attributed to 2 might be influenced by its degradation products in media including 1 and other possible dimers. Hence, bioactivity results previously reported from this compound should be taken with caution and checked if they differ from those of its degradation products. To the best of our knowledge, this is the first report on the anti-HIV activity and stability analysis of compound 2.


Assuntos
Antracenos/análise , Antracenos/farmacologia , Antraquinonas/farmacologia , Fármacos Anti-HIV/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Animais , Anti-Helmínticos/farmacologia , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Bioensaio , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Células Jurkat , Liliaceae/química , Estrutura Molecular , Mycobacterium tuberculosis , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA